Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria
- Others:
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR48 ; Institut des sciences biologiques (INSB-CNRS)-Institut des sciences biologiques (INSB-CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Unité de pathologie des petits ruminants ; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)
- ANR-06-PNRA-0031,VIACOX,VIACOX : Mise au point de tests de viabilité de l'agent de la fièvre Q dans les produits laitiers: approche transcriptomique(2006)
Description
Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (p)ppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00626159
- URN
- urn:oai:HAL:hal-00626159v1
- Origin repository
- UNICA