Published January 13, 2021
| Version v1
Journal article
Modeling and Analysis of the Coupling in Discrete Fracture Matrix models
Contributors
Others:
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
- COmplex Flows For Energy and Environment (COFFEE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
This paper deals with the derivation and analysis of reduced order elliptic PDE models on fractured domains. We use a Fourier analysis to obtain coupling conditions between subdomains, when the fracture is represented as a hypersurface embedded in the surrounded rock matrix. We compare our results to prominent examples from the literature, for diffusive models. In a second step, we present error estimates for the reduced order models in terms of the fracture width. For the proofs, we rely on a combination of Fourier analysis, asymptotic expansions and functional analysis. Finally, we study the behaviour of the error of the reduced order solutions on numerical test cases, when the fracture width tends to zero.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02437030
- URN
- urn:oai:HAL:hal-02437030v1
Origin repository
- Origin repository
- UNICA