Published 2012 | Version v1
Publication

Performance evaluation of multi-camera visual tracking

Description

Main drawbacks in single-camera multi-target visual tracking can be partially removed by increasing the amount of information gathered on the scene, i.e. by adding cameras. By adopting such a multi-camera approach, multiple sensors cooperate for overall scene understanding. However, new issues arise such as data association and data fusion. This work addresses the issue of evaluating the performance of a multicamera tracking algorithm based on Rao-Blackwellized Monte Carlo data association (RBMCDA) on real data. For this purpose, a new metric based on three performance indexes is developed.

Additional details

Created:
April 14, 2023
Modified:
December 1, 2023