Published August 29, 2011 | Version v1
Conference paper

On the hull number of some graph classes

Others:
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
Partially supported by CAPES/Brazil and ANR Blanc AGAPE.
Rényi Institute

Description

Given a graph $G = (V,E)$, the {\em closed interval} of a pair of vertices $u,v \in V$, denoted by $I[u,v]$, is the set of vertices that belongs to some shortest $(u,v)$-path. For a given $S\subseteq V$, let $I[S] = \bigcup_{u,v\in S} I[u,v]$. We say that $S\subseteq V$ is a {\em convex set} if $I[S] = S$. The {\em convex hull} $I_h[S]$ of a subset $S\subseteq V$ is the smallest convex set that contains $S$. We say that $S$ is a {\em hull set} if $I_h[S] = V$. The cardinality of a minimum hull set of $G$ is the {\em hull number} of $G$, denoted by $hn(G)$. We show that deciding if $hn(G)\leq k$ is an NP-complete problem, even if $G$ is bipartite. We also prove that $hn(G)$ can be computed in polynomial time for cactus and $P_4$-sparse graphs.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 30, 2023