Pattern Formation for the Swift-Hohenberg Equation on the Hyperbolic Plane
- Creators
- Chossat, Pascal
- Faye, Grégory
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Mathematical and Computational Neuroscience (NEUROMATHCOMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
In this paper we present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincaré disc D. Different types of patterns are considered: spatially periodicstationarysolutions,radialsolutionsandtraveling waves,howeverthereare significantdifferencesintheresultswiththeEuclideancase.Weapplyequivariantbifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H- planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-00845612
- URN
- urn:oai:HAL:hal-00845612v1
- Origin repository
- UNICA