A Bi-Invariant Statistical Model Parametrized by Mean and Covariance on Rigid Motions
- Creators
- Chevallier, Emmanuel
- Guigui, Nicolas
- Others:
- PhyTI (PhyTI) ; Institut FRESNEL (FRESNEL) ; Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- European Project: 786854,H2020 Pilier ERC,ERC AdG(2018)
Description
This paper aims to describe a statistical model of wrapped densities for bi-invariant statistics on the group of rigid motions of a Euclidean space. Probability distributions on the group are constructed from distributions on tangent spaces and pushed to the group by the exponential map. We provide an expression of the Jacobian determinant of the exponential map of SE(n) which enables the obtaining of explicit expressions of the densities on the group. Besides having explicit expressions, the strengths of this statistical model are that densities are parametrized by their moments and are easy to sample from. Unfortunately, we are not able to provide convergence rates for density estimation. We provide instead a numerical comparison between the moment-matching estimators on SE(2) and R 3 , which shows similar behaviors.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02568245
- URN
- urn:oai:HAL:hal-02568245v1
- Origin repository
- UNICA