Published February 15, 2014 | Version v1
Conference paper

Self-Configuration and Self-Optimization Autonomic Skeletons using Events

Others:
NIC Research Labs [Chile]
Safe Composition of Autonomous applications with Large-SCALE Execution environment (SCALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

This paper presents a novel way to introduce self-configuration and self-optimization autonomic characteristics to algorithmic skeletons using event driven programming techniques. Based on an algorithmic skeleton language, we show that the use of events greatly improves the estimation of the remaining computation time for skeleton execution. Events allow us to precisely monitor the status of the execution of algorithmic skeletons. Using such events, we provide a framework for the execution of skeletons with a very high level of adaptability. We focus mainly on guaranteeing a given execution time for a skeleton, by optimizing autonomically the number of threads allocated. The proposed solution is independent from the platform chosen for executing the skeleton for example we illustrate our approach in a multicore setting, but it could also be adapted to a distributed execution environment.

Abstract

International audience

Additional details

Created:
October 11, 2023
Modified:
November 28, 2023