Understandable Relu Neural Network For Signal Classification
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MEDIACODING ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
Description
ReLU neural networks suffer from a problem of explainability because they partition the input space into a lot of polyhedrons. This paper proposes a constrained neural network model that replaces polyhedrons by orthotopes: each hidden neuron processes only a single component of the input signal. When the number of hidden neurons is large, we show that our neural network is equivalent to a logistic regression whose input is a non-linear transformation of the processed signal. Hence, the training of our neural network always converges to a unique solution. Numerical simulations show that the loss of performance with respect to state-of-the-art methods is negligible even though our neural network is strongly constrained on robustness and explainability.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04195962
- URN
- urn:oai:HAL:hal-04195962v1
- Origin repository
- UNICA