Published 2016
| Version v1
Journal article
Comparison of some isoparametric mappings for curved triangular spectral elements
- Creators
- Pasquetti, Richard
- Others:
- Control, Analysis and Simulations for TOkamak Research (CASTOR) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Using the spectral element method (SEM), or more generally hp-finite elements, it is possible to solve with high accuracy various kinds of problems governed by partial differential equations (PDEs). However, as soon as the physical domain is not polygonal the accuracy quickly deteriorates if curved elements are not implemented. For the Fekete-Gauss TSEM (T, for triangle), i.e. that makes use of Fekete points for interpolation and Gauss points for quadrature, the importance of a good choice of the bending procedure is pointed out by comparing different isoparametric mappings for the Poisson and Grad-Shafranov PDEs.
Abstract
International audience
Additional details
- URL
- https://hal.univ-cotedazur.fr/hal-01307076
- URN
- urn:oai:HAL:hal-01307076v1
- Origin repository
- UNICA