Optimal control of a bioeconomic model applied to the recovery of household waste
- Creators
- Cherkaoui Dekkaki, Othman
- Djema, Walid
- Others:
- Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- Université Côte d'Azur (UCA)
Description
An improved mathematical model describing the process of generating energy from household waste treatment is proposed and analyzed. It is a three-dimensional nonlinear system that illustrates the process of transforming household waste stored in a landfill into energy that flows to a user's network. More precisely, the state of the system describes at a broad scale a process of generating energy E by treating a quota of a waste stock x through K-valorization units that may also consume a part of the produced energy for their operation. Our main objective is to maximize the energy produced and transmitted to the user's network. In particular, we investigate the issue of determining an optimal investing strategy that monitors the deployment of treatment plants. Using Pontryagin's maximum principle (PMP), we characterize, over a fixed time-frame [0, T ], the optimal investment that maximizes the produced energy while limiting the overall production costs. In addition, the efficiency of the suggested strategy is validated and illustrated throughout this work using a direct optimization method.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/hal-04393997
- URN
- urn:oai:HAL:hal-04393997v1
- Origin repository
- UNICA