Published September 11, 2017
| Version v1
Publication
Reconstructing the functional connectivity of multiple spike trains sing Hawkes models
Contributors
Others:
- Neuroscience Paris Seine (NPS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Réseaux de neurones et rythmes physiopathologiques = Neuronal Networks and Physiopathological Rhythms (NPS-09) ; Neuroscience Paris Seine (NPS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de physique de la matière condensée (LPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- UCAJEDI"Investissements d'Avenir" managed by the National Research Agency (ANR-15-IDEX-01), CNRS PEPS BMI 2012-2013, Interdisciplinaryaxis MTC-NSC of the University of Nice Sophia-Antipolis.ANR 2011 BS01 010 01
Description
Background: Statistical models that predict neuron spike occurrence from the earlier spiking activity of the whole recorded network are promising tools to reconstruct functional connectivity graphs. Some of the previously used methods were in the general statistical framework of the multivariate Hawkes processes but they often required huge amount of data, prior knowledge about the recorded network, and may generate non stationary models that could not be directly used in simulation. New Method: Here, we present a method, based on least-square estimators and LASSO penalty criteria, optimizing Hawkes models that can be used for simulation. Results: Challenging our method to multiple Integrate and Fire models of neuron networks demonstrated that it eciently detects both excitatory and inhibitory connections. The few errors that occasionally occurred with complex networks including common inputs, weak and chained connections, could easily be discarded based on objective criteria. Conclusions: The present method is robust, stable, applicable with an experimentally realistic amount of data, and does not require any prior knowledge of the studied network. Therefore, it can be used on a personal computer as a turn-key procedure to infer connectivity graphs and generate simulation models from simultaneous spike train recordings
Additional details
Identifiers
- URL
- https://hal.science/hal-01585986
- URN
- urn:oai:HAL:hal-01585986v1
Origin repository
- Origin repository
- UNICA