Published June 2013
| Version v1
Conference paper
Complexity Analysis of Random Geometric Structures Made Simpler
Creators
Contributors
Others:
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Effective Geometric Algorithms for Surfaces and Visibility (VEGAS) ; Centre Inria de l'Université de Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- ANR-11-BS02-0003,PRESAGE,méthodes PRobabilistes pour l'Éfficacité des Structures et Algorithmes GEométriques(2011)
Description
Average-case analysis of data-structures or algorithms is com- monly used in computational geometry when the, more clas- sical, worst-case analysis is deemed overly pessimistic. Since these analyses are often intricate, the models of random geo- metric data that can be handled are often simplistic and far from "realistic inputs". We present a new simple scheme for the analysis of geometric structures. While this scheme only produces results up to a polylog factor, it is much simpler to apply than the classical techniques and therefore succeeds in analyzing new input distributions related to smoothed com- plexity analysis. We illustrate our method on two classical structures: con- vex hulls and Delaunay triangulations. Specifically, we give short and elementary proofs of the classical results that n points uniformly distributed in a ball in R^d have a convex hull and a Delaunay triangulation of respective expected d−1 complexities Θ(n^(d+1) ) and Θ(n). We then prove that if we start with n points well-spread on a sphere, e.g. an (epsilon,kappa)-sample of that sphere, and perturb that sample by moving each point randomly and uniformly within distance at most δ of its initial position, then the expected complexity of the convex hull of the resulting point set is Θ( n^(1/2-1/2d) δ^(-d/4+1/4d) ).
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-00833774
- URN
- urn:oai:HAL:hal-00833774v1
Origin repository
- Origin repository
- UNICA