Published July 12, 2020
| Version v1
Conference paper
Optimizing bacterial resource allocation: metabolite production in continuous bioreactors
Creators
Contributors
Others:
- Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- Mathematics for Control, Transport and Applications (McTAO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Côte d'Azur (UCA)
- This work was partially supported by ANR project Maximic (ANR-17-CE40-0024-01), Inria IPL Cosy and Labex SIGNALIFE (ANR-11-LABX-0028 01). We also acknowledge the support of the FMJH Program PGMO and the support to this program from EDF-THALES-ORANGE.
- ANR-11-LABX-0028,SIGNALIFE,Réseau d'Innovation sur les Voies de Signalisation en Sciences de la Vie(2011)
- ANR-17-CE40-0024,Maximic,Contrôle optimal de cellules microbiennes - stratégies naturelles et synthétiques(2017)
Description
We show preliminary results addressing the problem of resource allocation in bacteria in the continuous bioreactor framework. We propose a coarse-grained self-replicator dynamical model that accounts for the microbial population growth inside a continuous bioreactor, and we study its asymptotic behavior through a dynamical systems analysis approach, in order to provide conditions for the persistence of the bacterial population. We then study the two most relevant cases of steady-state production in this scheme: 1) biomass production, classical in high-tech industrial processes as well as in research environments; and 2) metabolite production through the introduction of a heterologous metabolic pathway. Both problems are explored in terms of the internal allocation control-which can be externally disrupted-and the constant volumetric flow of the bioreactor; and analyzed through a numerical approach. The resulting two-dimensional optimization problem is defined in terms of Michaelis-Menten kinetics using the parameter values of previous works, and taking into account the constraints for the existence of the equilibrium of interest.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02980429
- URN
- urn:oai:HAL:hal-02980429v1
Origin repository
- Origin repository
- UNICA