A Recursive Approach For Multiclass Support Vector Machine: Application to Automatic Classification of Endomicroscopic Videos
- Others:
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Mauna Kea Technologies ; Mauna Kea Technologies
Description
The two classical steps of image or video classification are: image signature extraction and assignment of a class based on this image signature. The class assignment rule can be learned from a training set composed of sample images manually classified by experts. This is known as supervised statistical learning. The well-known Support Vector Machine (SVM) learning method was designed for two classes. Among the proposed extensions to multiclass (three classes or more), the one-versus-one and one-versus-all approaches are the most popular ones. This work presents an alternative approach to extending the original SVM method to multiclass. A tree of SVMs is built using a recursive learning strategy, achieving a linear worst-case complexity in terms of number of classes for classification. During learning, at each node of the tree, a bi-partition of the current set of classes is determined to optimally separate the current classification problem into two sub-problems. Rather than relying on an exhaustive search among all possible subsets of classes, the partition is obtained by building a graph representing the current problem and looking for a minimum cut of it. The proposed method is applied to classification of endomicroscopic videos and compared to classical multiclass approaches.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/hal-00905382
- URN
- urn:oai:HAL:hal-00905382v1
- Origin repository
- UNICA