Gentle Nearest Neighbors Boosting over Proper Scoring Rules
- Others:
- Centre de Recherche en Economie, Gestion, Modélisation et Informatique Appliquée (CEREGMIA) ; Université des Antilles et de la Guyane (UAG)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MEDIACODING ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Medical Informatics and Computer Science Laboratory ; Università Campus Bio-Medico di Roma / University Campus Bio-Medico of Rome ( UCBM)
- Sony Computer Science Laboratories [Tokyo, Japan] ; Sony France SA
Description
Tailoring nearest neighbors algorithms to boosting is an important problem. Recent papers study an approach, UNN, which provably minimizes particular convex surrogates under weak assumptions. However, numerical issues make it necessary to experimentally tweak parts of the UNN algorithm, at the possible expense of the algorithm's convergence and performance. In this paper, we propose a lightweight alternative algorithm optimizing proper scoring rules from a very broad set, and establish formal convergence rates under the boosting framework that surprisingly compete with those known for UNN. It is an adaptive Newton-Raphson algorithm, which belongs to the same lineage as the popular Gentle Adaboost. To the best of our knowledge, no such boosting-compliant convergence rates were previously known for these algorithms. We provide experiments on a dozen domains, including the challenging Caltech and SUN computer vision databases. They display that GNNB significantly outperforms UNN, both in terms of convergence rate and quality of the solution obtained, and GNNB provides a simple and efficient contender to techniques that can be used on very large domains, like stochastic gradient descent -- for which little is known to date. Experiments include a divide-and-conquer improvement of GNNB which exploits the link with proper scoring rules optimization.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00958809
- URN
- urn:oai:HAL:hal-00958809v1
- Origin repository
- UNICA