Published April 14, 2023 | Version v1
Publication

Selective CO methanation with structured RuO2/Al2O3 catalysts

Description

Active and selective structured RuO2/Al2O3 catalysts for CO methanation using a flow simulating CO2-rich reformate gases from WGS and PROX units (H2 excess, CO2 presence and 300 ppm CO concentration) were prepared. Both, the RuO2/Al2O3 powder and the slurry prepared from it for its structuration by washcoating of the metallic micromonolithic structure, were also active and selective. Both the slurry (S-RuAl) and micro- monoliths (M-RuAl) were able to completely and selectively methanate CO at much lower temperatures than the parent RuAl powder. The optimal working temperature in which the CO conversion is maximum and the CO2 conversion is minimized was determined to be from 149 °C to 239 °C for S-RuAl and from 165 °C to 232 °C for M- RuAl, whilst it was from 217 °C to 226 °C for RuAl powder. TPR, XRD and TEM measurements confirmed that the changes in the activity and selectivity for CO methanation among the considered catalysts can be related with modifications in the surface particle size of ruthenium and its reducibility. These were ascribed to the metallic substrate, the presence of PVA and colloidal alumina in the slurry preparation, the aqueous and acidic media and the thermal treatment used, resulting in a more active and selective catalysts than the parent powder.

Abstract

Ministerio de Economía y Competitividad de España y fondos europeos FEDER-ENE2012- 37431-C03-03

Abstract

Junta de Andalucía-TEP-8196

Additional details

Created:
April 15, 2023
Modified:
November 30, 2023