Published 2012
| Version v1
Conference paper
Modeling electrocardiogram using Yule-Walker equations and kernel machines
Contributors
Others:
- Université Libanaise
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Lebanese University [Beirut] (LU)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
One may monitor the heart normal activity by analyzing the electrocardiogram. We propose in this paper to combine the principle of kernel machines, that maps data into a high dimensional feature space, with the autoregressive (AR) technique defined using the Yule-Walker equations, which predicts future samples using a combination of some previous samples. A pre-image technique is applied in order to get back to the original space in order to interpret the predicted sample. The relevance of the proposed method is illustrated on real electrocardiogram from the MIT benchmark.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01966017
- URN
- urn:oai:HAL:hal-01966017v1
Origin repository
- Origin repository
- UNICA