Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger
- Creators
- Pian, E.
- d'Avanzo, P.
- Benetti, S.
- Branchesi, M.
- Brocato, E.
- Campana, S.
- Cappellaro, E.
- Covino, S.
- d'Elia, V.
- Fynbo, J.P.U.
- Getman, F.
- Ghirlanda, G.
- Ghisellini, G.
- Grado, A.
- Greco, G.
- Hjorth, J.
- Kouveliotou, C.
- Levan, A.
- Limatola, L.
- Malesani, D.
- Mazzali, P.A.
- Melandri, A.
- Møller, P.
- Nicastro, L.
- Palazzi, E.
- Piranomonte, S.
- Rossi, A.
- Salafia, O.S.
- Selsing, J.
- Stratta, G.
- Tanaka, M.
- Tanvir, N.R.
- Tomasella, L.
- Watson, D.
- Yang, S.
- Amati, L.
- Antonelli, L.A.
- Ascenzi, S.
- Bernardini, M.G.
- Boër, M.
- Bufano, F.
- Bulgarelli, A.
- Capaccioli, M.
- Casella, P.G.
- Castro-Tirado, A.J.
- Chassande-Mottin, E.
- Ciolfi, R.
- Copperwheat, C.M.
- Dadina, M.
- de Cesare, G.
- Di Paola, A.
- Fan, Y.Z.
- Gendre, B.
- Giuffrida, G.
- Giunta, A.
- Hunt, L.K.
- Israel, G.
- Jin, Z.-P.
- Kasliwal, M.
- Klose, S.
- Lisi, M.
- Longo, F.
- Maiorano, E.
- Mapelli, M.
- Masetti, N.
- Nava, L.
- Patricelli, B.
- Perley, D.
- Pescalli, A.
- Piran, T.
- Possenti, A.
- Pulone, L.
- Razzano, M.
- Salvaterra, R.
- Schipani, P.
- Spera, M.
- Stamerra, A.
- Stella, L.
- Tagliaferri, G.
- Testa, V.
- Troja, E.
- Turatto, M.
- Vergani, S.D.
- Vergani, D.
- Others:
- Laboratoire Univers et Particules de Montpellier (LUPM) ; Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- AstroParticule et Cosmologie (APC (UMR_7164)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Galaxies, Etoiles, Physique, Instrumentation (GEPI) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Description
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of gamma-rays, a gravitational wave signal, and a transient optical/near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named "macronovae" or "kilonovae", are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short gamma-ray burst at z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational wave source GW 170817 and gamma-ray burst GRB 170817A associated with a galaxy at a distance of 40 Mpc from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03-0.05 solar masses of material, including high-opacity lanthanides.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01645878
- URN
- urn:oai:HAL:hal-01645878v1
- Origin repository
- UNICA