A spatialized model of textures perception using structure tensor formalism
- Creators
- Faye, Grégory
- Chossat, Pascal
- Others:
- Mathematical and Computational Neuroscience (NEUROMATHCOMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- School of Mathematics (UMN-MATH) ; University of Minnesota [Twin Cities] (UMN) ; University of Minnesota System-University of Minnesota System
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 227747,EC:FP7:ERC,ERC-2008-AdG,NERVI(2009)
Description
The primary visual cortex (V1) can be partitioned into fundamental domains or hypercolumns consisting of one set of orientation columns arranged around a singularity or ''pinwheel'' in the orientation preference map. A recent study on the specific problem of visual textures perception suggested that textures may be represented at the population level in the cortex as a second-order tensor, the structure tensor, within a hypercolumn. In this paper, we present a mathematical analysis of such interacting hypercolumns that takes into account the functional geometry of local and lateral connections. The geometry of the hypercolumn is identified with that of the Poincaré disk $\D$. Using the symmetry properties of the connections, we investigate the spontaneous formation of cortical activity patterns. These states are characterized by tuned responses in the feature space, which are doubly-periodically distributed across the cortex.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00807371
- URN
- urn:oai:HAL:hal-00807371v1
- Origin repository
- UNICA