Published August 19, 2013
| Version v1
Journal article
Shape Matching via Quotient Spaces
Contributors
Others:
- Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
- Modélisation Géométrique & Multirésolution pour l'Image (MGMI) ; Laboratoire Jean Kuntzmann (LJK) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Computer Science Department [Stanford] ; Stanford University
Description
We introduce a novel method for non-rigid shape matching, designed to address the symmetric ambiguity problem present when matching shapes with intrinsic symmetries. Unlike the majority of existing methods which try to overcome this ambiguity by sampling a set of landmark correspondences, we address this problem directly by performing shape matching in an appropriate quotient space, where the symmetry has been identified and factored out. This allows us to both simplify the shape matching problem by matching between subspaces, and to return multiple solutions with equally good dense correspondences. Remarkably, both symmetry detection and shape matching are done without establishing any landmark correspondences between either points or parts of the shapes. This allows us to avoid an expensive combinatorial search present in most intrinsic symmetry detection and shape matching methods. We compare our technique with state-of-the-art methods and show that superior performance can be achieved both when the symmetry on each shape is known and when it needs to be estimated.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00947802
- URN
- urn:oai:HAL:hal-00947802v1
Origin repository
- Origin repository
- UNICA