Published March 9, 2021 | Version v1
Publication

Digital-analog quantum computation

Description

Digital quantum computing paradigm offers highly desirable features such as universality, scalability, and quantum error correction. However, physical resource requirements to implement useful error-corrected quantum algorithms are prohibitive in the current era of NISQ devices. As an alternative path to performing universal quantum computation, within the NISQ era limitations, we propose to merge digital single-qubit operations with analog multiqubit entangling blocks in an approach we call digital-analog quantum computing (DAQC). Along these lines, although the techniques may be extended to any resource, we propose to use unitaries generated by the ubiquitous Ising Hamiltonian for the analog entangling block and we prove its universal character. We construct explicit DAQC protocols for efficient simulations of arbitrary inhomogeneous Ising, two-body, and M-body spin Hamiltonian dynamics by means of single-qubit gates and a fixed homogeneous Ising Hamiltonian. Additionally, we compare a sequential approach where the interactions are switched on and off (stepwise DAQC) with an always-on multiqubit interaction interspersed by fast single-qubit pulses (banged DAQC). Finally, we perform numerical tests comparing purely digital schemes with DAQC protocols, showing a remarkably better performance of the latter. The proposed DAQC approach combines the robustness of analog quantum computing with the flexibility of digital methods.

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023