Published April 3, 2023 | Version v1
Journal article

Descriptor engineering in machine learning regression of electronic structure properties for 2D materials

Description

We build new material descriptors to predict the band gap and the work function of 2D materials by tree-based machine-learning models. The descriptor's construction is based on vectorizing property matrices and on empirical property function, leading to mixing features that require low-resource computations. Combined with database-based features, the mixing features significantly improve the training and prediction of the models. We find R 2 greater than 0.9 and mean absolute errors (MAE) smaller than 0.23 eV both for the training and prediction. The highest R 2 of 0.95, 0.98 and the smallest MAE of 0.16 eV and 0.10 eV were obtained by using extreme gradient boosting for the bandgap and work-function predictions, respectively. These metrics were greatly improved as compared to those of database features-based predictions. We also find that the hybrid features slightly reduce the overfitting despite a small scale of the dataset. The relevance of the descriptor-based method was assessed by predicting and comparing the electronic properties of several 2D materials belonging to new classes (oxides, nitrides, carbides) with those of conventional computations. Our work provides a guideline to efficiently engineer descriptors by using vectorized property matrices and hybrid features for predicting 2D materials properties via ensemble models.

Abstract

International audience

Additional details

Created:
April 14, 2023
Modified:
December 1, 2023