Published February 22, 2010
| Version v1
Conference paper
Tensor decomposition can reduce to rank-one approximations
- Creators
- Comon, Pierre
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-06-BLAN-0074,DECOTES,Decompositions Tensorielles et applications(2006)
Description
The Canonical Polyadic (CP) decomposition of a tensor is difficult to compute. Even algorithms computing the best rank-one approximation are not entirely satisfactory. And deflation approaches (successive rank-1 tensor approximations) do not work for tensors. However, there are cases where successive rank-1 matrix approximations can help in computing the CP decomposition. This is what we investigate in this talk. In particular, we analyze the cases where loading matrices are banded and structured, e.g. Toeplitz or Hankel.
Abstract
more details in : hal-00490248
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00985606
- URN
- urn:oai:HAL:hal-00985606v1
- Origin repository
- UNICA