Published April 2, 2017
| Version v1
Publication
Analysis, detection and correction of misspecified discrete time state space models
Creators
Contributors
Others:
- Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Misspecifications (i.e. errors on the parameters) of state space models lead to incorrect inference of the hidden states. This paper studies weakly nonlin-ear state space models with additive Gaussian noises and proposes a method for detecting and correcting misspecifications. The latter induce a biased estimator of the hidden state but also happen to induce correlation on innovations and other residues. This property is used to find a well-defined objective function for which an optimisation routine is applied to recover the true parameters of the model. It is argued that this method can consistently estimate the bias on the parameter. We demonstrate the algorithm on various models of increasing complexity.
Additional details
Identifiers
- URL
- https://hal.science/hal-01500238
- URN
- urn:oai:HAL:hal-01500238v1
Origin repository
- Origin repository
- UNICA