A mobility-SAV approach for a Cahn-Hilliard equation\\ with degenerate mobilities
- Creators
- Bretin, Elie
- Calatroni, Luca
- Masnou, Simon
- Others:
- Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)
- Institut Camille Jordan (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-18-CE05-0017,BEEP,Ingéniérie d'électrodes à base de nanofils pour la photocatalyse(2018)
- ANR-19-CE01-0009,MiMESis-3D,Métamorphoses et propriétés de la neige à partir d'images 3D : expérimentation et simulation micro-échelle pour une meilleure compréhension des mécanismes impliqués(2019)
- ANR-22-CE48-0010,TASKABILE,Apprentissage bi-niveau adapté à l'objectif de modéles statistiques flexibles pour l'imagerie et la vision(2022)
- ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
- ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011)
- European Project: 777826,NoMADS(2018)
Description
A novel numerical strategy is introduced for computing approximations of solutions to a Cahn-Hilliard model with degenerate mobilities. This model has recently been introduced as a second-order phase-field approximation for surface diffusion flows. Its numerical discretization is challenging due to the degeneracy of the mobilities, which generally requires an implicit treatment to avoid stability issues at the price of increased complexity costs. To mitigate this drawback, we consider new first- and second-order Scalar Auxiliary Variable (SAV) schemes that, differently from existing approaches, focus on the relaxation of the mobility, rather than the Cahn-Hilliard energy. These schemes are introduced and analysed theoretically in the general context of gradient flows and then specialised for the Cahn-Hilliard equation with mobilities. Various numerical experiments are conducted to highlight the advantages of these new schemes in terms of accuracy, effectiveness and computational cost.
Abstract
27 pages, 10 figures
Additional details
- URL
- https://hal.science/hal-04143766
- URN
- urn:oai:HAL:hal-04143766v1
- Origin repository
- UNICA