Biomedical Images Classification by Universal Nearest Neighbours Classifier Using Posterior Probability
- Others:
- Medical Informatics and Computer Science Laboratory ; Università Campus Bio-Medico di Roma / University Campus Bio-Medico of Rome ( UCBM)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MEDIACODING ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre de Recherche en Economie, Gestion, Modélisation et Informatique Appliquée (CEREGMIA) ; Université des Antilles et de la Guyane (UAG)
- Sony Computer Science Laboratories [Tokyo, Japan] ; Sony France SA
- Institut Universitaire de France (IUF) ; Ministère de l'Education nationale, de l'Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Description
Universal Nearest Neighbours (unn) is a classifier recently proposed, which can also effectively estimates the posterior probability of each classification act. This algorithm, intrinsically binary, requires the use of a decomposition method to cope with multiclass problems, thus reducing their complexity in less complex binary subtasks. Then, a reconstruction rule provides the final classification. In this paper we show that the application of unn algorithm in conjunction with a reconstruction rule based on the posterior probabilities provides a classification scheme robust among different biomedical image datasets. To this aim, we compare unn performance with those achieved by Support Vector Machine with two different kernels and by a k Nearest Neighbours classifier, and applying two different reconstruction rules for each of the aforementioned classification paradigms. The results on one private and five public biomedical datasets show satisfactory performance.
Abstract
Third International Workshop, MLMI 2012, Held in Conjunction with MICCAI 2012
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00958909
- URN
- urn:oai:HAL:hal-00958909v1
- Origin repository
- UNICA