Published 2017
| Version v1
Journal article
Convergence order of upwind type schemes for transport equations with discontinuous coefficients
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire de Mathématiques d'Orsay (LM-Orsay) ; Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jacques-Louis Lions (LJLL) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Description
An analysis of the error of the upwind scheme for transport equation with discontinuous coefficients is provided. We consider here a velocity field that is bounded and one-sided Lipschitz continuous. In this framework, solutions are defined in the sense of measures along the lines of Poupaud and Rascle's work. We study the convergence order of the upwind scheme in the Wasserstein distances. More precisely, we prove that in this setting the convergence order is 1/2. We also show the optimality of this result. In the appendix, we show that this result also applies to other " diffusive " " first order " schemes and to a forward semi-Lagrangian scheme.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01273848
- URN
- urn:oai:HAL:hal-01273848v1
Origin repository
- Origin repository
- UNICA