Divergence and unique solution of equations
- Others:
- Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Foundations of Component-based Ubiquitous Systems (FOCUS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Dipartimento di Informatica - Scienza e Ingegneria [Bologna] (DISI) ; Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
- This work was supported by Labex MILYON/ANR-10-LABX-0070, bythe European Research Council (ERC) under the Horizon 2020 programme (CoVeCe, grantagreement No 678157), by H2020-MSCA-RISE project 'Behapi' (ID 778233), and by theproject ANR-16-CE25-0011 REPAS
- ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
- ANR-16-CE25-0011,REPAS,Des systèmes logiciels fiables et conscients des données privées, via les métriques de bisimulation(2016)
Description
We study proof techniques for bisimilarity based on unique solution of equations. We draw inspiration from a result by Roscoe in the denotational setting of CSP and for failure semantics, essentially stating that an equation (or a system of equations) whose infinite unfolding never produces a divergence has the unique-solution property. We transport this result onto the operational setting of CCS and for bisimilarity. We then exploit the operational approach to: refine the theorem, distinguishing between different forms of divergence; derive an abstract formulation of the theorems, on generic LTSs; adapt the theorems to other equivalences such as trace equivalence, and to preorders such as trace inclusion. We compare the resulting techniques to enhancements of the bisimulation proof method (the `up-to techniques'). Finally, we study the theorems in name-passing calculi such as the asynchronous $\pi$-calculus, and use them to revisit the completeness part of the proof of full abstraction of Milner's encoding of the $\lambda$-calculus into the $\pi$-calculus for L\'evy-Longo Trees.
Abstract
This is an extended version of the paper with the same title published in the proceedings of CONCUR'17
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02376814
- URN
- urn:oai:HAL:hal-02376814v1
- Origin repository
- UNICA