Surrogate modeling of time-domain electromagnetic wave propagation via dynamic mode decomposition and radial basis function
- Creators
- Li, Kun
- Li, Yixin
- Li, Liang
- Lanteri, Stéphane
- Others:
- Southwestern University of Finance and Economics [Chengdu, China]
- School of Mathematical Sciences [Chengdu] (UESTC) ; University of Electronic Science and Technology of China [Chengdu] (UESTC)
- Modélisation et méthodes numériques pour le calcul d'interactions onde-matière nanostructurée (ATLANTIS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
This work introduces an 'equation-free' non-intrusive model order reduction (NIMOR) method for surrogate modeling of time-domain electromagnetic wave propagation. The nested proper orthogonal decomposition (POD) method, as a prior dimensionality reduction technique, is employed to extract the time-and parameter-independent reduced basis (RB) functions from a collection of high-fidelity (HF) solutions (or snapshots) on a properly chosen training parameter set. A dynamic mode decomposition (DMD) method, resulting in a further dimension reduction of the NIMOR method, is then used to predict the reduced-order coefficient vectors for future time instants on the previous training parameter set. The radial basis function (RBF) is employed for approximating the reduced-order coefficient vectors at a given untrained parameter in the future time instants, leading to the applicability of DMD method to parameterized problems. A main advantage of the proposed method is the use of a multi-step procedure consisting of the POD, DMD and RBF techniques to accurately and quickly recover field solutions from a few large-scale simulations. Numerical experiments for the scattering of a plane wave by a dielectric disk, by a multi-layer disk, and by a 3-D dielectric sphere nicely illustrate the performance of the NIMOR method.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/hal-04401269
- URN
- urn:oai:HAL:hal-04401269v1
- Origin repository
- UNICA