A new algorithm for approaching Nash equilibrium and Kalai Smoridinsky solution
- Others:
- Laboratoire d'Etudes et Recherche en Mathématiques Appliquées (LERMA) ; Ecole Mohammadia d'Ingénieurs (EMI)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE (OPALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
In the present paper, a new formulation of Nash games is proposed for solving general multi-objective optimization problems. The main idea of this approach is to split the optimization variables which allow us to determine numerically the strategies between two players. The first player minimizes his cost function using the variables of the first table P, the second player, using the second table Q. The original contribution of this work concerns the construction of the two tables of allocations that lead to a Nash equilibrium on the Pareto front. On the other hand, we search P and Q that lead to a solution which is both a Nash equilibrium and a Kalai Smorodinsky solution. For this, we proposed and tried out successfully two algorithms which calculate P, Q and their associated Nash equilibrium, by using some extension of Normal Boundary Intersection approach (NBI).
Additional details
- URL
- https://hal.inria.fr/hal-00648693
- URN
- urn:oai:HAL:hal-00648693v1
- Origin repository
- UNICA