Published May 28, 2020 | Version v1
Publication

On Order Types of Random Point Sets

Others:
Geometric Algorithms and Models Beyond the Linear and Euclidean realm (GAMBLE ) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Bordelais de Recherche en Informatique (LaBRI) ; Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
Funded by grant ANR-17-CE40-0017 of the French National Research Agency (ANR project ASPAG). This work was initiated during the ALEA 2013 conference and the 15th INRIA–McGill–Victoria Workshop on Computational Geometry at the Bellairs Research Institute.
ANR-17-CE40-0017,ASPAG,Analyse et Simulation Probabilistes des Algorithmes Géométriques(2017)

Description

A simple method to produce a random order type is to take the order type of a random point set. We conjecture that many probabilitydistributions on order types defined in this way are heavily concentrated and therefore sample inefficiently the space of order types. We present two results on this question. First, we study experimentally the bias in the order types of $n$ random points chosen uniformly and independently in a square, for $n$ up to $16$. Second, we study algorithms for determining the order type of a point set in terms of the number of coordinate bits they require to know. We give an algorithm that requires on average $4n \log_2 n+O(n)$ bits to determine the order type of $P$, and show that any algorithm requires at least $4n \log_2 n - O(n \log\log n)$ bits. This implies that the concentration conjecture cannot be proven by an "efficient encoding'' argument.

Additional details

Created:
December 4, 2022
Modified:
December 1, 2023