Published September 9, 2020 | Version v1
Publication

Use of Impedance Spectroscopy for the Characterization of In-Vitro Osteoblast Cell Response in Porous Titanium Bone Implants

Description

The use of titanium implants with adequate porosity (content, size and morphology) could solve the stress shielding limitations that occur in conventional titanium implants. Experiments to assess the cellular response (adhesion, proliferation and differentiation of osteoblasts) on implants are expensive, time-consuming and delicate. In this work, we propose the use of impedance spectroscopy to evaluate the growth of osteoblasts on porous titanium implants. Osteoblasts cells were cultured on fully-dense and 40 vol.% porous discs with two ranges of pore size (100–200 μm and 355–500 μm) to study cell viability, proliferation, differentiation (Alkaline phosphatase activity) and cell morphology. The porous substrates 40 vol.% (100–200 µm) showed improved osseointegration response as achieved more than 80% of cell viability and higher levels of Cell Differentiation by Alkaline Phosphatase (ALP) at 21 days. This cell behavior was further evaluated observing an increase in the impedance modulus for all study conditions when cells were attached. However, impedance levels were higher on fully-dense due to its surface properties (flat surface) than porous substrates (flat and pore walls). Surface parameters play an important role on the global measured impedance. Impedance is useful for characterizing cell cultures in different sample types.

Abstract

Ministry of Science and Innovation of Spain grant PID2019-109371GB-I00

Abstract

Junta de Andalucía–FEDER (Spain) Project US-1259771

Abstract

Junta de Andalucía-Proyecto de Excelencia (Spain) P18-FR-2038

Additional details

Created:
March 26, 2023
Modified:
December 1, 2023