Deciphering the worldwide invasion of the Asian long-horned beetle: A recurrent invasion process from the native area together with a bridgehead effect
- Others:
- Unité de recherche Zoologie Forestière (URZF) ; Institut National de la Recherche Agronomique (INRA)
- Stellenbosch University
- Institut Sophia Agrobiotech (ISA) ; Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL
- Centre de Biologie pour la Gestion des Populations (UMR CBGP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Université d'Orléans (UO)
- Region Centre Val de Loire : 2014 00095480 ; French Ministry of Agriculture, Food and Forestry DGAL : E07/2014 ; COST Action FP 1401 - Global Warning
Description
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long-horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian "random forest" algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human-mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human-mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.
Abstract
International audience
Additional details
- URL
- https://hal.inrae.fr/hal-02622945
- URN
- urn:oai:HAL:hal-02622945v1
- Origin repository
- UNICA