Linear and 2-frugal choosability of graphs of small maximum average degree
- Creators
- Cohen, Nathann
- Havet, Frédéric
- Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
Description
A proper vertex colouring of a graph $G$ is {\it 2-frugal} (resp. {\it linear}) if the graph induced by the vertices of any two colour classes is of maximum degree 2 (resp. is a forest of paths). A graph $G$ is {\it 2-frugally} (resp. {\it linearly}) {\it $L$-colourable} if for a given list assignment $L:V(G)\mapsto 2^{\mathbb N}$, there exists a 2-frugal (resp. linear) colouring $c$ of $G$ such that $c(v)\in L(v)$ for all $v\in V(G)$. If $G$ is 2-frugally (resp. linearly) $L$-list colourable for any list assignment such that $|L(v)|\ge k$ for all $v\inV(G)$, then $G$ is {\it 2-frugally} (resp. {\it linearly}) {\it $k$-choosable}. In this paper, we improve some bounds on the 2-frugal choosability and linear choosability of graphs with small maximum average degree.
Additional details
- URL
- https://hal.inria.fr/inria-00459692
- URN
- urn:oai:HAL:inria-00459692v1
- Origin repository
- UNICA