Published June 16, 2021
| Version v1
Publication
DISPERSION FOR THE WAVE AND SCHRÖDINGER EQUATIONS OUTSIDE A BALL AND COUNTEREXAMPLES
Creators
Contributors
Others:
- Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We consider the wave and Schrödinger equations with Dirichlet boundary conditions in the exterior of a ball in $R^d$. In dimension $d = 3$ we construct a sharp, global in time parametrix and then proceed to obtain sharp dispersive estimates, matching the $R^3$ case, for all frequencies (low and high). If $d ≥ 4$, we provide an explicit solution to the wave equation localized at large frequency $1/h$ with data $\delta_{Q_0}$, where $Q_0$ is a point at large distance s from the center of the ball : taking $s \sim h^{−1/3}$, the decay rate of that solution exhibits a $(t/h)^{d−3}/4$ loss with respect to the boundary less case, that occurs at $t \sim 2s$ with an observation point being symmetric to $Q_0$ with respect to the center of the ball (at the Poisson Arago spot). A similar counterexample is also obtained for the Schrödinger flow.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03060388
- URN
- urn:oai:HAL:hal-03060388v2
Origin repository
- Origin repository
- UNICA