The Complexity of Model-Checking the Tail-Recursive Fragment of Higher-Order Modal Fixpoint Logic
- Creators
- Bruse, Florian
- Lange, Martin
- Lozes, Etienne
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Spécification et Vérification (LSV) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
Description
Higher-Order Fixpoint Logic (HFL) is a modal specification language whose expressive power reaches far beyond that of Monadic Second-Order Logic, achieved through an incorporation of a typed λ-calculus into the modal µ-calculus. Its model checking problem on finite transition systems is decidable, albeit of high complexity, namely k-EXPTIME-complete for formulas that use functions of type order at most k > 0. In this paper we present a fragment with a presumably easier model checking problem. We show that so-called tail-recursive formulas of type order k can be model checked in (k − 1)-EXPSPACE, and also give matching lower bounds. This yields generic results for the complexity of bisimulation-invariant non-regular properties, as these can typically be defined in HFL.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03180788
- URN
- urn:oai:HAL:hal-03180788v1
- Origin repository
- UNICA