Published August 27, 2020 | Version v1
Publication

Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks

Description

The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.

Abstract

Marie Curie FP7 Integration PCIG11-GA2012-321455

Abstract

Ministerio de Economía y Competitividad RYC-2011-09152, ENE2012-31087

Abstract

US Department of Energy DE-FC02-04ER54698, SC-G903402, DEFG02- 04ER54761, DE-AC02-09CH11466, DE-FG02- 08ER54984

Abstract

NRF Korea 2009-0082012

Additional details

Created:
March 1, 2023
Modified:
November 30, 2023