Elongation, break-up, dissolution and growth of nanoparticles during the fiber drawing of silica-based optical preforms
- Others:
- Institut de Physique de Nice (INPHYNI) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre Pluridisciplinaire de Microscopie Electronique et de Microanalyse (AMU CP2M) ; Aix Marseille Université (AMU)
- Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Advanced Materials Research Laboratories, Department of Chemistry and Center for Optical ((COMSET) ; Clemson University
Description
Rare-earth-doped (RE) silica-based optical fiber lasers and amplifiers are developed for numerous applications. However, silica glass has certain characteristics (high phonon energy, low RE solubility, …) which may be detrimental for the luminescence properties of RE. To overcome this issue, the incorporation of RE in nanoparticles is investigated to tailor the spectroscopic properties through the control of their composition [1]. Such optical fibers are elaborated by a high temperature fiber drawing (2000°C) of nanoparticles-doped optical preforms. This communication focuses on the thermodynamical and morphological changes undergone by nanoparticles throughout the fiber drawing. Dissolution and growth of particles induced by high temperatures will be discussed. Also, tomography-based (FIB/SEM) and X-ray nanotomography Multiscale imagery show that nanoparticles elongate and can even break-up during the fiber drawing [2]. Such modifications are explained by Rayleigh-Plateau instabilities and the competition between viscous forces and surface tension. These observations allow us to envision a new top-down strategy, the use of these phenomena to tailor optical properties through the control of the size and shape of nanoparticles during the drawing step.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01860718
- URN
- urn:oai:HAL:hal-01860718v1
- Origin repository
- UNICA