Published July 21, 2022 | Version v1
Publication

Discovering α–patterns from gene expression data

Description

The biclustering techniques have the purpose of finding subsets of genes that show similar activity patterns under a subset of conditions. In this paper we characterize a specific type of pattern, that we have called α–pattern, and present an approach that consists in a new biclustering algorithm specifically designed to find α–patterns, in which the gene expression values evolve across the experimental conditions showing a similar behavior inside a band that ranges from 0 up to a pre–defined threshold called α. The α value guarantees the co– expression among genes. We have tested our method on the Yeast dataset and compared the results to the biclustering algorithms of Cheng & Church (2000) and Aguilar & Divina (2005). Results show that the algorithm finds interesting biclusters, grouping genes with similar behaviors and maintaining a very low mean squared residue.

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023