Published December 10, 2008 | Version v1
Publication

The environment of the fast rotating star Achernar - II. Thermal infrared interferometry with VLTI/MIDI

Description

Context: As is the case of several other Be stars, Achernar is surrounded by an envelope, recently detected by near-IR interferometry. Aims: We search for the signature of circumstellar emission at distances of a few stellar radii from Achernar, in the thermal IR domain. Methods: We obtained interferometric observations on three VLTI baselines in the N band (8-13 mic), using the MIDI instrument. Results: From the measured visibilities, we derive the angular extension and flux contribution of the N band circumstellar emission in the polar direction of Achernar. The interferometrically resolved polar envelope contributes 13.4 +/- 2.5 % of the photospheric flux in the N band, with a full width at half maximum of 9.9 +/- 2.3 mas (~ 6 Rstar). This flux contribution is in good agreement with the photometric IR excess of 10-20% measured by fitting the spectral energy distribution. Due to our limited azimuth coverage, we can only establish an upper limit of 5-10% for the equatorial envelope. We compare the observed properties of the envelope with an existing model of this star computed with the SIMECA code. Conclusions: The observed extended emission in the thermal IR along the polar direction of Achernar is well reproduced by the existing SIMECA model. Already detected at 2.2mic, this polar envelope is most probably an observational signature of the fast wind ejected by the hot polar caps of the star.

Abstract

A&A Letter, in press

Additional details

Created:
December 3, 2022
Modified:
November 30, 2023