Published May 2, 2022
| Version v1
Publication
Kalikow decomposition for counting processes with stochastic intensity and application to simulation algorithms
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM) ; Université Paris 1 Panthéon-Sorbonne (UP1)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
- ANR-19-CE40-0024,ChaMaNe,Enjeux mathématiques issus des neurosciences(2019)
Description
We propose a new Kalikow decomposition for continuous time multivariate counting processes, on potentially infinite networks. We prove the existence of such a decomposition in various cases. This decomposition allows us to derive simulation algorithms that hold either for stationary processes with potentially infinite network but bounded intensities, or for processes with unbounded intensities in a finite network and with empty past before 0. The Kalikow decomposition is not unique and we discuss the choice of the decomposition in terms of algorithmic efficiency in certain cases.We apply these methods on several examples: linear Hawkes process, age dependent Hawkes process, exponential Hawkes process, Galves-Löcherbach process.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03188536
- URN
- urn:oai:HAL:hal-03188536v2
- Origin repository
- UNICA