Analysis of operator splitting in the non-asymptotic regime for nonlinear reaction-diffusion equations. Application to the dynamics of premixed flames
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Modélisation mathématique, calcul scientifique (MMCS) ; Institut Camille Jordan [Villeurbanne] (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C) ; CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
- This research was supported by an ANR project grant (French National Research Agency - ANR Blancs): Séchelles (PI S. Descombes - 2009-2013), by a DIGITEO RTRA project: MUSE (PI M. Massot - 2010-2014), and by a France-Stanford project (PIs P. Moin & M. Massot - 2011-2012). M. Duarte was partially supported by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under contract No. DE-AC02-05CH11231 at LBNL.
Citation
Description
In this paper we mathematically characterize through a Lie formalism the local errors induced by operator splitting when solving nonlinear reaction-diffusion equations, especially in the non-asymptotic regime. The non-asymptotic regime is often attained in practice when the splitting time step is much larger than some of the scales associated with either source terms or the diffusion operator when large gradients are present. In a series of previous works a reduction of the asymptotic orders for a range of large splitting time steps related to very short time scales in the nonlinear source term has been studied, as well as that associated with large gradients but for linearized equations. This study provides a key theoretical step forward since it characterizes the numerical behavior of splitting errors within a more general nonlinear framework, for which new error estimates can be derived by coupling Lie formalism and regularizing effects of the heat equation. The validity of these theoretical results is then assessed in the framework of two numerical applications, a KPP-type reaction wave where the influence of stiffness on local error estimates can be thoroughly investigated; and a much more complex problem, related to premixed flame dynamics in the low Mach number regime with complex chemistry and detailed transport, for which the present theoretical study shows to provide relevant insights.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00837089
- URN
- urn:oai:HAL:hal-00837089v4
- Origin repository
- UNICA