Published 2012
| Version v1
Journal article
Unconditional well-posedness for wave maps
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Courant Institute of Mathematical Sciences [New York] (CIMS) ; New York University [New York] (NYU) ; NYU System (NYU)-NYU System (NYU)
Description
We prove uniqueness of solutions to the wave map equation in the natural class, namely $ (u, \partial_t u) \in C([0,T); \dot{H}^{d/2})\times C^1([0,T); \dot{H}^{d/2-1})$ in dimensions $d\geq 4$. This is achieved through estimating the difference of two solutions at a lower regularity level. In order to reduce to the Coulomb gauge, one has to localize the gauge change in suitable cones as well as estimate the difference between the frames and connections associated to each solutions and take advantage of the assumption that the target manifold has bounded curvature.
Abstract
16 pagesAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00936364
- URN
- urn:oai:HAL:hal-00936364v1
Origin repository
- Origin repository
- UNICA