Published December 2011 | Version v1
Journal article

3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio

Contributors

Others:

Description

We analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wave propagation and earthquake motion for their behaviour with a varying P-wave to S-wave speed ratio (VP/VS). The second-order schemes include three finite-difference, three finite-element and one discontinuous-Galerkin schemes. The fourth-order schemes include three finite-difference and two spectral-element schemes. All schemes are second-order in time. We assume a uniform cubic grid/mesh and present all schemes in a unified form. We assume plane S-wave propagation in an unbounded homogeneous isotropic elastic medium. We define relative local errors of the schemes in amplitude and the vector difference in one time step and normalize them for a unit time. We also define the equivalent spatial sampling ratio as a ratio at which the maximum relative error is equal to the reference maximum error. We present results of the extensive numerical analysis. We theoretically (i) show how a numerical scheme sees the P and S waves if the VP/VS ratio increases, (ii) show the structure of the errors in amplitude and the vector difference and (iii) compare the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial derivatives. We find that four of the tested schemes have errors in amplitude almost independent on the VP/VS ratio. The homogeneity of the approximations to the second mixed and non-mixed spatial derivatives in terms of the coefficients of the leading terms of their truncation errors as well as the absolute values of the coefficients are key factors for the behaviour of the schemes with increasing VP/VS ratio. The dependence of the errors in the vector difference on the VP/VS ratio should be accounted for by a proper (sufficiently dense) spatial sampling.

Abstract

International audience

Additional details

Identifiers

URL
https://hal.archives-ouvertes.fr/hal-00650304
URN
urn:oai:HAL:hal-00650304v1

Origin repository

Origin repository
UNICA