Towards autonomous robot navigation in human populated environments using an Universal SFM and parametrized MPC
- Creators
- Fiasché, Enrico
- Martinet, Philippe
- Malis, Ezio
- Others:
- Intelligence artificielle et algorithmes efficaces pour la robotique autonome (ACENTAURI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-17-CE33-0011,MOBI-DEEP,technology-aided MOBIlity by semantic DEEP learning(2017)
Description
Autonomous mobile robot navigation in a human populated and encumbered environment is recognized as a hard problem to be solved in real-time. Most of the time, robots face the so-called 'Freezing Robot Problem', that occurs when the robot stops because no feasible and safe motion can be found. In order to provide to the robot the capability of proactive navigation, in this work we generalize the classical Social Force Model into a Universal Social Force Model (USFM) that attributes to any object surrounding the robot (humans, robots, obstacles) a social behavior. Nonlinear Model Predictive Control (MPC) can be used to solve the autonomous navigation problem since it can take into account all the possible constraints coming from the interaction model between the robot and the different surrounding objects. However, to be effective, MPC requires a sufficiently large prediction horizon, which generally implies a high computational cost. In order to considerably reduce the computational cost, we propose a new control parametrisation based on Thin Plate Spline Radial Basis Functions that allow us to have a large prediction horizon with fewer parameters. The global control framework is validated in simulation with virtual pedestrians, and in real world environments.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/hal-04210032
- URN
- urn:oai:HAL:hal-04210032v1
- Origin repository
- UNICA