Published 2016
| Version v1
Publication
Uniqueness issues for evolution equations with density constraints
Creators
Contributors
Others:
Description
In this paper, we present some basic uniqueness results for evolution equations under density constraints. First, we develop a rigorous proof of a well-known result (among specialists) in the case where the spontaneous velocity field satisfies a monotonicity assumption: we prove the uniqueness of a solution for first-order systems modeling crowd motion with hard congestion effects, introduced recently by Maury et al. The monotonicity of the velocity field implies that the 2-Wasserstein distance along two solutions is λ-contractive, which in particular implies uniqueness. In the case of diffusive models, we prove the uniqueness of a solution passing through the dual equation, where we use some well-known parabolic estimates to conclude an L1-contraction property. In this case, by the regularization effect of the nondegenerate diffusion, the result follows even if the given velocity field is only L∞ as in the standard Fokker-Planck equation.
Additional details
Identifiers
- URL
- http://hdl.handle.net/11567/977458
- URN
- urn:oai:iris.unige.it:11567/977458
Origin repository
- Origin repository
- UNIGE