Enhancing Evidence-Based Medicine with Natural Language Argumentative Analysis of Clinical Trials
- Others:
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- This work is partly funded by the French government labelled PIA program under its IDEX UCA JEDI project (ANR-15-IDEX-0001). This work has been supported by the French government, through the 3IA Côte d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
In the latest years, the healthcare domain has seen an increasing interest in the definition of intelligent systems to support clinicians in their everyday tasks and activities. Among others, also the field of Evidence-Based Medicine is impacted by this twist, with the aim to combine the reasoning frameworks proposed thus far in the field with mining algorithms to extract structured information from clinical trials, clinical guidelines, and Electronic Health Records. In this paper, we go beyond the state of the art by proposing a new end-to-end pipeline to address argumentative outcome analysis on clinical trials. More precisely, our pipeline is composed of (i) an Argument Mining module to extract and classify argumentative components (i.e., evidence and claims of the trial) and their relations (i.e., support, attack), and (ii) an outcome analysis module to identify and classify the effects (i.e., improved, increased, decreased, no difference, no occurrence) of an intervention on the outcome of the trial, based on PICO elements. We annotated a dataset composed of more than 500 abstracts of Randomized Controlled Trials (RCT) from the MEDLINE database, leading to a labeled dataset with 4198 argument components, 2601 argument relations, and 3351 outcomes on five different diseases (i.e., neoplasm, glaucoma, hepatitis, diabetes, hypertension). We experiment with deep bidirectional transformers in combination with different neural architectures (i.e., LSTM, GRU and CRF) and obtain a macro F1-score of .87 for component detection and .68 for relation prediction, outperforming current state-of-the-art end-to-end Argument Mining systems, and a macro F1-score of .80 for outcome classification.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03264761
- URN
- urn:oai:HAL:hal-03264761v1
- Origin repository
- UNICA