Published October 2017 | Version v1
Journal article

Planned Products of the Mars Structure Service for the InSight Mission to Mars

Others:
University of Florida [Gainesville] (UF)
Institut de Physique du Globe de Paris (IPGP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Jet Propulsion Laboratory (JPL) ; NASA-California Institute of Technology (CALTECH)
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Max-Planck-Institut für Sonnensystemforschung (MPS) ; Max-Planck-Gesellschaft
Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG) ; Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) ; Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
School of Earth Sciences [Bristol] ; University of Bristol [Bristol]
Department of Geosciences [Princeton] ; Princeton University
NASA Marshall Space Flight Center (MSFC)
Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Schmidt United Institute of Physics of the Earth [Moscow] (IPE) ; Russian Academy of Sciences [Moscow] (RAS)
Moscow Institute of Physics and Technology [Moscow] (MIPT)
Institute of Geophysics [ETH Zürich] ; Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW) ; Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Department of Geology [College Park] ; University of Maryland [College Park] ; University of Maryland System-University of Maryland System
DLR Institut für Planetenforschung ; Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR)
Royal Observatory of Belgium [Brussels] (ROB)
Swiss Seismological Service
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Department of Electronic & Electrical Engineering [London] ; University College of London [London] (UCL)
Deutsches Zentrum für Luft- und Raumfahrt [Bonn] (DLR)

Description

The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service(MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023