Published May 3, 2022
| Version v1
Journal article
Observer Design for Nonlinear Systems with Equivariance
Creators
Contributors
Others:
- Australian National University - Department of engineering (ANU) ; Australian National University (ANU)
- Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Equivariance is a common and natural property of many nonlinear control systems, especially those associated with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the equivariance, that provides structure enabling the design of robust and high-performance observers. A key insight is to pose the observer state to lie in the symmetry group rather than on the system state space. This allows one to define a global intrinsic equivariant error but poses a challenge in defining internal dynamics for the observer. By choosing an equivariant lift of the system dynamics for the observer internal model, we show that the error dynamics have a particularly nice form. Applying the methodology of extended Kalman filtering to the equivariant error state yields a filter we term the equivariant filter. The geometry of the state-space manifold appears naturally as a curvature modification to the classical Riccati equation for extended Kalman filtering. The equivariant filter exploits the symmetry and respects the geometry of an equivariant system model, and thus yields high-performance, robust filters for a wide range of mechatronic and navigation systems. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03652827
- URN
- urn:oai:HAL:hal-03652827v1
Origin repository
- Origin repository
- UNICA