Published 2022 | Version v1
Journal article

Euclid: Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids

Hamaus, N.
Aubert, M.
Pisani, A.
Contarini, S.
Verza, G.
Cousinou, M. -C.
Escoffier, Stephanie
Hawken, A.
Lavaux, G.
Pollina, G.
Wandelt, B. D.
Weller, J.
Bonici, M.
Carbone, C.
Guzzo, L.
Kovacs, A.
Marulli, F.
Massara, E.
Moscardini, L.
Ntelis, P.
Percival, W. J.
Radinović, S.
Sahlén, M.
Sakr, Z.
Sánchez, A. G.
Winther, H. A.
Auricchio, N.
Awan, S.
Bender, R.
Bodendorf, C.
Bonino, D.
Branchini, E.
Brescia, M.
Brinchmann, J.
Capobianco, V.
Carretero, J.
Castander, F. J.
Castellano, M.
Cavuoti, S.
Cimatti, A.
Cledassou, R.
Congedo, G.
Conversi, L.
Copin, Y.
Corcione, L.
Cropper, M.
da Silva, A.
Degaudenzi, H.
Douspis, M.
Dubath, F.
Duncan, C. A. J.
Dupac, X.
Dusini, S.
Ealet, A.
Ferriol, S.
Fosalba, P.
Frailis, M.
Franceschi, E.
Franzetti, P.
Fumana, M.
Garilli, B.
Gillis, B.
Giocoli, C.
Grazian, A.
Grupp, F.
Haugan, S. V. H.
Holmes, W.
Hormuth, F.
Jahnke, K.
Kermiche, S.
Kiessling, A.
Kilbinger, M.
Kitching, T.
Kümmel, M.
Kunz, M.
Kurki-Suonio, H.
Ligori, S.
Lilje, P. B.
Lloro, I.
Maiorano, E.
Marggraf, O.
Markovic, K.
Massey, R.
Maurogordato, S.
Melchior, M.
Meneghetti, M.
Meylan, G.
Moresco, M.
Munari, E.
Niemi, S. M.
Padilla, C.
Paltani, S.
Pasian, F.
Pedersen, K.
Pettorino, V.
Pires, S.
Poncet, M.
Popa, L.
Pozzetti, L.
Rebolo, R.
Rhodes, J.
Rix, H.
Roncarelli, M.
Rossetti, E.
Saglia, R.
Schneider, P.
Secroun, A.
Seidel, G.
Serrano, S.
Sirignano, C.
Sirri, G.
Starck, J. -L.
Tallada-Crespí, P.
Tavagnacco, D.
Taylor, A. N.
Tereno, I.
Toledo-Moreo, R.
Torradeflot, F.
Valentijn, E. A.
Valenziano, L.
Wang, Y.
Welikala, N.
Zamorani, G.
Zoubian, J.
Andreon, S.
Baldi, M.
Camera, S.
Mei, S.
Neissner, C.
Romelli, E.
Others:
Universitats-Sternwarte [München] ; Ludwig-Maximilians-Universität München (LMU)
Institut de Physique des 2 Infinis de Lyon (IP2I Lyon) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Centre de Physique des Particules de Marseille (CPPM) ; Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Department of Astrophysical Sciences [Princeton] ; Princeton University
Dipartimento di Fisica e Astronomia [Bologna] ; Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (INFN, Sezione di Bologna) ; Istituto Nazionale di Fisica Nucleare (INFN)
INAF - Osservatorio Astronomico di Bologna (OABO) ; Istituto Nazionale di Astrofisica (INAF)
Istituto Nazionale di Fisica Nucleare, Sezione di Padova (INFN, Sezione di Padova) ; Istituto Nazionale di Fisica Nucleare (INFN)
Dipartimento di Fisica e Astronomia "Galileo Galilei" ; Università degli Studi di Padova = University of Padua (Unipd)
Institut d'Astrophysique de Paris (IAP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Max Planck Institute for Extraterrestrial Physics (MPE) ; Max-Planck-Gesellschaft
Istituto Nazionale di Fisica Nucleare, Sezione di Genova (INFN, Sezione di Genova) ; Istituto Nazionale di Fisica Nucleare (INFN)
Università degli studi di Genova = University of Genoa (UniGe)
Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN) ; Istituto Nazionale di Fisica Nucleare (INFN)
INAF-IASF Milano ; Istituto Nazionale di Astrofisica (INAF)
INAF - Osservatorio Astronomico di Brera (OAB) ; Istituto Nazionale di Astrofisica (INAF)
Università degli Studi di Milano = University of Milan (UNIMI)
Universidad de La Laguna [Tenerife - SP] (ULL)
Instituto de Astrofisica de Canarias (IAC)
Università di Bologna Dipartimento di Fisca e Astronomia, INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna
University of Bologna/Università di Bologna
University of Waterloo [Waterloo]
Department of Physics and Astronomy [Waterloo] ; University of Waterloo [Waterloo]
Perimeter Institute for Theoretical Physics [Waterloo]
Institute of Theoretical Astrophysics [Oslo] ; University of Oslo (UiO)
Swedish Collegium for Advanced Study [Uppsala]
Uppsala University
Institut de recherche en astrophysique et planétologie (IRAP) ; Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Unité de Recherche Environnement, Génomique Fonctionnelle et Études Mathématiques [Beyrouth] (UR-EGFEM) ; Université Saint-Joseph de Beyrouth (USJ)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
Centre National d'Études Spatiales [Toulouse] (CNES)
Institut d'astrophysique spatiale (IAS) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
AstroParticule et Cosmologie (APC (UMR_7164)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)

Description

Euclid will survey galaxies in a cosmological volume of unprecedented size, providing observations of more than a billion objects distributed over a third of the full sky. Approximately 20 million of these galaxies will have spectroscopy available, allowing us to map the three-dimensional large-scale structure of the Universe in great detail. This paper investigates prospects for the detection of cosmic voids therein, and the unique benefit they provide for cosmology. In particular, we study the imprints of dynamic and geometric distortions of average void shapes and their constraining power on the growth of structure and cosmological distance ratios. To this end, we make use of the Flagship mock catalog, a state-of-the-art simulation of the data expected to be observed with Euclid. We arrange the data into four adjacent redshift bins, each of which contains about 11000 voids, and estimate the void-galaxy cross-correlation function in every bin. Fitting a linear-theory model to the data, we obtain constraints on $f/b$ and $D_M H$, where $f$ is the linear growth rate of density fluctuations, $b$ the galaxy bias, $D_M$ the comoving angular diameter distance, and $H$ the Hubble rate. In addition, we marginalize over two nuisance parameters included in our model to account for unknown systematic effects in the analysis. With this approach Euclid will be able to reach a relative precision of about 4% on measurements of $f/b$ and 0.5% on $D_M H$ in each redshift bin. Better modeling or calibration of the nuisance parameters may further increase this precision to 1% and 0.4%, respectively. Our results show that the exploitation of cosmic voids in Euclid will provide competitive constraints on cosmology even as a stand-alone probe. For example, the equation-of-state parameter $w$ for dark energy will be measured with a precision of about 10%, consistent with earlier more approximate forecasts.

Abstract

15 pages, 7 figures. Accepted in A&A

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 30, 2023